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2800 Bremen 33, Federal Republic of Germany 

Received 9 November 1989 

Abstract. The infinite set of periodic orbits of a chaotic system is investigated. 
Their globally exact symbolic dynamics is related to Birkhoff’s method of iterated 
symmetry lines which produces symmetric periodic orbits of various classes. A com- 
plete picture emerges as to what part of the periodic orbits can be obtained by means 
of the Birkhoff lines. In addition, the thermodynamic formalism is applied to the 
multifractal structure created by the horseshoe arrangement of the periodic orbits. 

1. Introduction 

Chaos in a classical dynamical system derives from the existence of homoclinic or 
heteroclinic intersections of the invariant manifolds of unstable periodic orbits. The 
scaling properties of their fractal structures are intimately related to  the eigenvalues 
of those periodic orbits. (We shall speak of eigenvalues of periodic orbits when we 
mean the eigenvalues of the Jacobian matrix a t  the corresponding periodic orbit in 
some PoincarC section.) An analysis of a chaotic system thus requires the knowledge 
of its most important periodic orbits. No systematic methods exists that  generates all  
periodic orbits in an arbitrary system. For Hamiltonian systems, however, the method 
of symmetry lines has  been developed into a powerful tool to  produce a subset of the 
periodic orbits, namely those which possess certain symmetries [l]. The essence of 
the method is t o  iterate a few lines related to time reversal symmetry, in the PoincarC 
surface of section, and obtain the periodic orbits as intersections of those iterated 
lines. I t  is well known that this method does not, in general, yield all periodic orbits. 

Therefore it is instructive to investigate a chaotic system where a complete survey 
on all periodic orbits can be obtained by other methods. By comparison we will see 
which subset of the periodic orbits derives from symmetry properties. 

A classical potential scattering system where this is indeed possible has been known 
for some time [2, 3). The potential in a two-dimensional configuration space with 
Cartesian coordinates I ,  y is 

It was demonstrated in [2, 31 that  there is chaos in the phase space of this triple hill 
potential, and how this manifests itself in the deflection function and in the scattering 
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cross section. The  interesting range of energies is between the saddle energy E, % 0.45 
and the energy of the hilltops, E,  x 1.005. In this range, almost all trajectories are 
scattering orbits, going to  infinity for times t -+ +co or t -W. However, a non- 
trivial subset of the energy surface (of measure zero) consists of trajectories which 
are held between the three potential hills for all times, in past and future. Such 
trajectories will be called localised in the following. They are all unstable and form a 
hyperbolic invariant set. 

Of particular importance for the present paper is the observation that  there exists 
a binary symbolic dynamics to  represent all localised orbits of the system in closed 
form. In section 2 we shall describe the symbolic dynamics again, and relate i t  t o  
the potential's symmetry properties. In this connection we will introduce a symmetry 
reduced PoincarC mapping. 

As usual in chaotic scattering systems, the most conspicuous periodic orbit oscil- 
lates back and forth on the potential's saddle. In section 3 we consider the invariant 
manifolds WE and W" of this orbit. For sufficiently high energies, E > EB x 0.485.  . ., 
we find Smale's horseshoe in pure form, and on the closure of the lattice of intersections 
of W E  and W" recover the binary symbolic dynamics. All localised orbits (and thus 
by necessity all periodic orbits) will be labelled by their corresponding 0/1 sequences. 
In section 4 we define symmetry lines in the PoincarC surface and their iterates. From 
their intersections we obtain subsets of the set of periodic orbits. The periodic orbits 
are grouped into symmetry classes, and a connection to  symmetries of the symbol 
sequences is established. 

The closure of the set of homoclinic and heteroclinic points of system (1) is a frac- 
tal set whose scaling and metric properties are approximately given by the eigenvalues 
of the two fixed points of the PoincarC map. These eigenvalues are energy dependent. 
In section 5 we analyse some of these properties in terms of their mult,ifractal thermo- 
dynamics, i.e. we compute the potential F ( P )  and, equivalently, the D, respectively 
f(a) spectra. 

2. S y m m e t r y  in conf igu ra t ion  space and orbits 

The potential of (1) has seven critical points. One is the minimum a t  Po = ( O , O ) ,  
with energy E,  = 0 . 4 0 . .  . . There are three saddle points PS1, P S 2 ,  PJ3 with energy 
E, = 0.45..  . ;  PS1 = (0 .6 . .  . , O ) ,  and the other two saddles are obtained by & 2 ~ / 3  
rotation of PS1 about the centre. At energy E, = 1 .005 . .  . there are three maxima 
Pml, Pm2, Pm3; Pml = ( - 1 . 4 . .  . , O ) ,  and the other two are again obtained by &2n/3 
rotation. The  potential has C,, symmetry. I t  vanishes sufficiently quickly for typical 
scattering trajectories to  converge towards straight asymptotes for t -+ fco.  For 
E < E, and E > E,  the system possesses no localised orbits and shows no signs of 
chaos. For E E (E,, E,) the energy surface has two disjoint components. Orbits in a 
neighbourhood of the origin are bounded; they fill a subset of phase space of positive 
measure. There are also scattering trajectories in this energy range. For E E (E,, E,) 
the localised orbits have measure zero in phase space. Chaos exists in the energy range 

In the following we shall restrict the discussion to  the energy range E E (E,, E,). 
I t  was shown in [2] that  there is topological chaos, and how it influences the scattering 
dynamics. In [3] the effects of this chaos on the scattering cross section was analysed. 
Figure 1 shows the equipotential lines for E = 0.6 together with three symmetry lines 

E E (Eo, Em). 
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ul, u2, U,, and two pieces of orbits. It will be useful later on to define the ui as half 
lines rather than full lines; so they start at  Po and extend straight to infinity. V is 
invariant under reflections at  ui. The set of three ui lines is itself invariant under C,, 
operations. 

For energies not too close to E,, namely for E > E, % 0.485.. ,, it has been 
verified that localised orbits do not enter a neighbourhood of the origin. For any 
localised orbit, and thus in particular for any periodic orbit, the sequence of crossings 
of the ui lines can be followed. Divide the trajectory into pieces as given by subsequent 
ui crossings. Let dj  = k(k = 1 , 2 ,  or 3) if the j t h  crossing occurs at  line uk. For each 
trajectory, this allows the construction of a 0/1 sequence { u j , j  E Z}, according to the 
scheme 

a .  3 = O  
a .  3 = 1 

ifdj+, = dj 
if dj+l # dj 

It is intuitively obvious that a binary sequence is adequate; consider figure 1. Let 
an orbit cross line u1 with positive G,  The next possible crossing is eit,her with line 
u1 again, as in the right piece, or with line u2,  as in the left piece. Thus after each 
crossing there is but a binary choice: to return to the line of the last, crossing or to go 
on to the next. This simple observation is the basis for the binary signatmure that is 
defined in the following. 

- 1  
X 

Figure 1. The energy boundary for E = 0.6 (three full line segments starting and 
ending at the frame boundary), the symmetry lines uy,u2,u3 (three broken half lines 
emanating from the origin), and two pieces of orbits in position space. The right piece 
is of $7 type; it returns to the U line from which it started. The other piece is of i r  
type; it connects two different U lines. 

Two periodic orbits are particularly simple. First, let y be the orbit corresponding 
to aj  = OVj E Z. This orbit oscillates back and forth across one of the three saddles. 
There are of course three such orbits, but as they are related by C,, symmetry we 
shall identify them as one orbit y .  Second, let r be the orbit corresponding to aj = 
1 V j  E Z. This orbit rotates around the origin in one of two possible orientations. (For 
illustrations of orbits y and I' see section 4.) The two orbits with different orientation 
are related by reflections at  ui. They will thus be identified as one orbit I?. 
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Other localised orbits can be described as follows. Each aj = 0 in the sequence 
corresponds to  a piece of orbit which resembles $7, and each aj = 1 corresponds to  a 
piece which resembles iI', In this sense all localised orbits can be thought of as being 
composed from pieces similar to  f r  and to  gI'. (An analogous decomposition for the 
middle pieces of scattering orbits was given in [2].) 

In order to  investigate the binary symbolic dynamics in more detail, we need a 
Poincari mapping. The following choice has turned out to  be convenient; it incor- 
porates the system's C,, symmetry. Let the energy be fixed at  a value E.  For each 
crossing of a trajectory with any of the lines ullu2,  or u3 we record the distance r 
from the origin and the radial component pr of the momentum (i.e. its projection on 
ui ) .  Both orientations of crossings are taken because the U, are half lines. The surface 
of section P so defined is invariant under C,, operations. A given point z E P thus 
represents six different phase space points which shall henceforth be identified. 

Each localised orbit generates an infinite sequence of intersection points with the 
r/pr plane. Generic scattering orbits, on the other hand, produce finite sets of point,s. 
In the energy range E E ( E S , E m ) ,  almost all initial points in P correspond to  scat- 
tering orbits with incoming and outgoing asymptotes; they have a first and a last 
intersection with the lines u,. The set A+ of points in P which possess infinitely many 
images under the Poincark map P : P P ,  has measure zero. Likewise, the set A- 
of points with infinitely many pre-images has also zero measure. The localised orbits 
correspond to  the set A = A+ n A - .  In particular, A contains all periodic points of 
the map Poincark map P .  

Qualitatively similar behaviour has been discussed for a linear array of scatterers 
[4], for scattering off three hard discs [5, 61, and for a charged particle in the field of 
a magnetic dipole [7]. 

3. Symbolic dynamics in the Poincard map 

Chaotic scattering is closely related to the existence of unstable orbits which oscillate 
on top of a saddle point of the potential. Consider therefore the orbit 7 and its 
corresponding point P7 in the symmetry reduced Poincark surface of section. Figure 2 
depicts P7 together with pieces of its stable manifold W" and its unstable manifold 
W " ,  for a typical energy in the range E E (EBIEm), where E, % 0.485. (In [2] 
these manifolds were shown without symmetry reduction.) Because of time reversal 
invariance and the symmetry properties of ui ,  W" and W" are related via reflection 
a t  the r axis. Denoting time reversal by means of an overbar, we have W" = p, and 
it suffices to  follow the course of W " .  

The branch X of W" extends directly into the asymptotic range r i CO. The  
inner branch A of Wu leaves P7 towards the point a- a t  r = 0 from where it jumps 
t o  point a+ because the intersection of the corresponding orbit is now with a different 
ui line, and the projection of the momentum is therefore different. The next piece 
B continues towards larger r-values and passes near P-, before it returns to  r = 0 a t  
point b- . From there W" leaves figure 2 and re-enters later a t  point c+. The last two 
pieces shown are C and D; the corresponding pieces of W" are 2 through D. 

All subsequent pieces of W" lie between A U X and B ,  and all subsequent pieces 
of W s  lie between XUX and B. The homoclinic intersections of Wu and W s  are t,hus 
confined to  the shaded area. It contains the closure A of the set of homoclinic points 
which is an invariant set with binary symbolic dynamics. So let us look in detail a t  
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Figure 2. Some branches of the invariant manifolds of the fixed point P-, (marked 
by a full circle) in the r/pr plane, for E = 0.6. All localised orbits of the PoincarC 
map P are located within the hatched area 

the Poincark map on this part of the r / p ,  plane, see figure 3. It is a perfect example 
of Smale’s horseshoe map. 

Figure 3. Schematic plot of the horseshoe dynamics in the hatched area of figure 2. 

The nature of the map becomes clear if we consider special points on the invariant 
manifolds. Under the mapping P we have 

Qi - Q 2  H Q3 c* Q4 

RI I+ R, w R, 

SI I+ s 2  

Tl H T2. 
The orbit in configuration space corresponding to the initial point SI was shown in 
figure 7(b) of [2]. If we define the four rectangles 

.O := P,QlTlQ3 
0 .  := P,Q2T2Q4 

1. := R2Q3R3S2 

.1 := RlQ,R2Sl (4) 
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we have the mapping 

P : .o U .1 ---* 0. U 1. 
.o I-+ 0. 
.1 w 1.. 

( 5 )  

In order to construct the sets A + ,  A - ,  A recursively, we introduce the notation 

A!+, := {.O, .l} A' := {O., 1.) ( 6 )  

for the two sets of rectangles, and 

A' := {u-l.al = U - ' .  n E (0, I}} (7) 

for the set of their four intersections O.O,O.l,l.O, 1.1, with A' = A: n A l .  On A', both 
P and its inverse are defined. Thus we can identify the images and pre-images of its 
four parts: 

A i  := { . a l a 2  = P-'(al  .a2)laj  E (0, l}} 

A! := { U - ~ U - ~ .  = P ( ~ - ~ . a - ~ ) ( a ~  E {0,1}}. 

All these strips are bounded by pieces of the invariant manifolds. The set of their 
intersections consists of sixteen parts and will be called 11': 

:= { u - ~ u - ~ . u ~ u ~  = u - ~ u - ~ .  n .ala21aj E { o , ~ } } .  (9) 

Again we have A2 = A$ n A!. Iterating this procedure we obtain a nested sequence 
of sets An = A: n A: 

A ' 3 A 2 3  . . .  3 A n 3  

each consisting of 2'" elements, with 

CO 

A = n An.  
n= l  

By construction, A is invariant under P and P-' .  The operation of P is a right shift 
on A ,  P-' operates as a left shift: 

(11) 
P : . . .  U-,  . . . ~ - ~ a - ~ . a ~ a ~ .  . .a,. . . w . . .U- , .  . . a -2u- la1 .u2 .  . . a , .  . . 
P-' : . . .  U-, . . . a-2a-l .alu2.  . .a , .  . . tr . . .U-, ,  . . . ~ - ~ . a - ~ a ~ a ~ .  . .U , .  . . . 

The point P7 is given by the symbol sequence uj  = OVj E Z\{O}. There is another 
point with period 1, namely Pr, given by a j  = l V j  E Z \  (0). This point corresponds 
to the ring orbit r. Periodic sequences of aj  correspond to periodic orbits. The 0/1- 
sequences introduced here correspond precisely to the O/l-sequences of section 2. The 
symbolic horseshoe dynamics thus reflects how orbits are composed of pieces similar 
to $7 and gr. Points from A ,  i.e. two-sided infinite O/l-sequences, correspond to 
localised orbits. Points from A+ c W s ,  i.e. from the infinite set of strips described 
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by the one-sided sequences .alu2a3.. ., correspond to incoming scattering orbits that 
never leave the potential. Points from A- c W",  i.e. from the set of strips described 
by the one-sided sequences , . . U - ~ U - ~ ~ - ~ . ,  correspond to outgoing scattering orbits 
that never came in. 

In summary, the dynamics on an energy surface with E in the range (EB1 E,) 
can be characterised as follows. There exists a hyperbolic set A of measure zero 
consisting of localised trajectories which have an infinite number of intersections with 
the Poincark surface, both forward and backward in time. The rest of the energy 
surface consists of orbits which reach out to infinity as time goes to +00 and/or -00, 

and have only a finite number of intersections with the Poincark plane in forward 
and/or backward time. For points of A we found a globally exact symbolic dynamics 
which turned out to be binary; therefore the Poincark mapping of our system is a 
perfect realisation of a Smale horseshoe map. To any infinite binary sequence there 
corresponds exactly one localised trajectory of the symmetry reduced system, and 
vice versa, each localised trajectory is characterised uniquely by an infinite binary 
sequence. In particular, this complete symbolic dynamics provides full knowledge 
of all periodic orbits because periodic orbits are in  one-to-one correspondence with 
periodic symbolic sequences. It is remarkable that this picture of a perfect horseshoe 
holds true over the relatively large energy interval (EBI E,) x (0.485,1.005). No 
bifurcations of localised orbits occur in this interval. 

When E falls towards E, w 0.485, the point R, of figure 3 is (r,p,) = (O,O), 
and for lower energies, the simple horseshoe picture ceases to be valid. The closure 
of the homoclinic points of Py no longer coincides with the closure of the homoclinic 
points of Pr. The two sets separate. The invariant set corresponding to P, disappears 
completely as E + E,. The invariant set corresponding to  Pr loses its connection 
to the scattering orbits as E < E,; it then forms the backbone of a region of bound 
chaos. 

4. Symmetry classes of periodic orbits 

The potential ( 1 )  possesses C,, symmehy. Its symmetry elements are the three re- 
flections at  lines u l ,  u2, us, and two rotations by f2n/3 about the centre. In addition, 
our system possesses time reversal symmetry T .  Let at denote t.he flow in phase space 
as given by the Hamiltonian H = H ( z 9  y, p,,p,): 

Symmetry under time reversal 

means that 

From (13) and (14) it is obvious that T and at o T are involutions 

T 2  = id (at o T)' = id. 
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What are the invariant sets of T and 0, o T ,  for a given t? From (13) we see that  
invariance of a phase space point under T requires p ,  = p ,  = 0. This defines a line in 
the energy surface E = constant: the line of points a t  the boundary of the accessible 
potential range, where the kinetic energy is zero. The phase space points invariant 
under 0, oT are points ( z . p )  for which @ - , / , ( z , p )  is invariant under T ,  i.e., they 
are the invariant set of T transported by the flow 

Before we translate these observations into the corresponding properties of our 
PoincarC map let us consider another such involutory symmetry of the system. Com- 
bination of reflection g1 with time reversal gives the symmetry operation S := gl o T 

s : (~,Y,P,,P,) I-+ (x1-Y1-P,,PJ (16) 

s2 = id ( ‘P~ o s ) ~  = id. (17) 

for which an analogous relation to  (15) holds: 

Again we can look for the invariant sets of S and a, o S on a given energy surface. We 
find that the invariant line of S is the set of points y = p ,  = 0, i.e. the orbits crossing 
the 2 axis perpendicularly. The invariant lines of 0, o S are obtained from them by 
the flow 0,/,. 

Two more such involutions are obtained from combination of U,  and U, with T ,  
but these will be identified with S by means of the C,, rotations. 

Let us now discuss what this implies for our PoincarC map P : P + P .  Given an 
energy E ,  the surface of section before symmetry reduction, defined by y = 0,z > 0,  
consists of two sheets: one with p ,  > 0, the other with p ,  < 0. The operation T leads 
back and forth between the two sheets. The operation S ,  on the other hand, preserves 
p ,  and thus stays on the same sheet. The sheets happen to contain the part z > 0 of 
the invariant lines of S .  

After symmetry reduction, we identify a phase space point (z, ylp,,py) with its 
image under ul, (z,  -y,p, ,  - p , ) ,  and therefore also the operations T and S = o1 o T .  
Denoting henceforth the restriction of these operations to  the PoincarC surface by R 

R : (rlpr) H (‘1 -pr) 

R2 = id ( P  o R)’ = id. (19) 

(18) 

the two equations (15)  and (17)  combine into 

The  invariant set of R is now the line 

Ro = {(r,pr)lpr = 01. (20) 

The invariant set of P o R consists of two parts Rf and 72: (see figure 4) .  The line 
Rf is the invariant set of T transported by the flow until it first crosses the PoincarC 
surface, and Ri‘ is the part z < 0 of the invariant set of S transported into P .  

Given the elementary lines Ro,  RI, Ry) we may subject them to forward and 
backward iteration under P :  

R,, := PnR,  
xi,+, := PnR;  
R;n+l := PnR; 
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Figure 4. The elementary symmetry lines and some of their images under P in the 
r/pr plane. Some periodic orbits with low periods are marked. 

( n  E Z). The two sets R;,+, and R&+, will together be denoted by R2,+, .  The 
following facts are then true (see e.g. [l]): 

(i) R, is the invariant set of Pm o R(m E Z) . 
(ii) The intersections of R, and 72, are points of period Im - nl. 

Iterating the lines R,, R;, Ry, we thus obtain periodic orbits by looking for intersec- 
tions of these lines and their iterat,es. Figure 4 gives a few examples. The two fixed 
points are identified as 

There is an orbit of period 2 given as 

This orbit is marked by a star; the corresponding trajectory in position space is shown 
in figure 5 ( b ) .  Two period 3 orbits are shown, represented by the points 

The first is marked by full circles; its trajectory is shown in figure 5(c). The second 
is marked by open circles; its trajectory is shown in figure 5 ( i ) .  The orbit of period 4 
given by 

R, n R-, 

is marked by crosses; its trajectory is shown in figure 5(m) .  
The interesting question is how the periodic orbits so determined compare to  the 

symbolic identification as introduced in section 3. The connection is quite simple. I t  
is based on the following facts. 

(i) The line R, is the set of all points whose symbolic signature (finite or infinite) 
is symmetric with respect to  the dot: 

R, N {. . .U ,  . . . U * U l . U I U * .  . .U, . . . [Uj E ( 0 , l ) ) .  (26) 

The reason is of course the ai-symmetry of the system; an orbit crossing a line oi or- 
thogonally produces the same sequence of symbols in forward and backward direction. 
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(ii) The line 72; is the set of all points whose signature (finite or infinite) is sym- 
metric with respect to 0.: 

72; N {. . .a , .  . .a2a10.a1a,. . .a,.. . laj E {0,1}}. (27) 

The reason is that the points of 72; have been transported into P from an encounter 
with the boundary of the accessible potential range. Their orbits in configuration 
space, viewed from that encounter, are identical in forward and backward time; the 
piece containing the reflection at  the potential border must be of type 47. 

(iii) The line 72: is the set of all points whose signature (finite or infinite) is 
symmetric with respect to 1.: 

The reason is that the points of 72: have been transport,ed into P from a perpendicular 
crossing of the extensions of the ui lines. Their orbits in configuration space, viewed 
from that crossing, are symmetric with respect to reflections at ui; the piece containing 
this crossing must by of type 5I'. 

Iterates of the basic symmetry linesR,, RI, Rysimply have the points of symmetry 
in their sequences right or left shifted. It is now obvious that points from intersections 
of two such lines correspond to periodic orbits: they have two points of symmetry in 
their sequence, so the sequence must be repetetive. In the following we shall represent 
orbits of period p by their basic repetetive blocks of p symbols, ala2 . . . a p .  

We are now in a position to give a complete survey on the periodic orbits with 
respect to their symmetry properties. Let us introduce the symbols -, -6, T to denote 
spaces, zeroes, and ones with respect to which a O/l-sequence is symmetric. There 
are seven classes of periodic orbits. 

- at two positions. Example: 0-01-1 (see figure 5(m)) .  

a - and a 0. Examples: -6-,~1~1,-611~11, 0-0161 (see figure 5(a ,c ,e ,  n)) .  

a - and a 7. Examples: T-, 0-OT, 00-OOf (see figure 5(g, i, I C ) ) .  

two symbols 0. Example: OoOl0l (see figure 5 ( 0 ) ) .  

two symbols 1. Example: O i O l i l  (figure 5 ( p )  shows one third of this orbit). 

a oand a T. Examples: m, 0171, bllT11, OnOi, 00000T (see figure 5 ( b ,  d ,  f,j, I ) ) .  

Coo: Intersections of type R, nR,, are periodic orbits whose sequence contains a 

CO': Intersections of type R, nRz,,,, are periodic orbits whose sequence contains 

CO" Intersections of type R, n R&+, are periodic orbit,s whose sequence contains 

C" Intersections of type RT nRlnt l  are periodic orbits whose sequence contains 

C"" Intersections of type 72: nR;,,, are periodic orbits whose sequence contains 

C'" Intersections of type 72; nRzOntl are periodic orbits whose sequence contains 

C-- The rest of the periodic orbits cannot be obtained from intersection of the 
symmetry lines. Examples: figure 5 ( q )  shows one half of the orbit 001011, and fig- 
ure 5(r) shows one third of 0001101. 

Let us now explore the symmetry properties of the various types of periodic orbits, 
and at  the same time the multiplicities of the corresponding points in the symmetry re- 
duced Poincark section. As C,, has six elements, a given point of our Poincark surface 
P represents altogether six different points in the full phase space. The corresponding 
time reversed points are obtained by reflection R. Remember from above (see (18)) 
that R is the symmetry reduction of both T and S. Therefore, if a symmetry reduced 
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Figure 5. 18 example of jmiodic orbits of low periods in position space. To each 
orbit we give the symmetry clsss in the lower left corner, and the basic block of the 
symbolic signature in the lower right comer. 
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periodic orbit shows symmetry with respect to  the axis r = 0,  its counterpart in full 
phase space may be symmetric under T ,  or SI or both. If it is not symmetric under TI 
then each corresponding non-reduced orbit has a reflection symmetric trace which can 
be traversed in two orientations (classes Coo,Co",C""). If it is not symmetric under 
S, then each corresponding non-reduced orbit is traversed in both directions but has 
no reflection symmetry (class C"). 

To discuss whether or not a periodic orbit is invariant under rotations D, we 
introduce one more detail in the notation. Depending on the orientation of a piece 
in a given orbit, we replace the symbols 1 in the 0/1 sequences by + (for positive), 
or by - (for negative rotation). The sequence 0011, e.g., can t8hen appear as OO++ 
or as 00-- = T(OO++). The sequence 00101101 can have the two forms OO+O--0+ 
and (its image under T) 00-O++O-. Note that each intervening 0, i.e. each orbit 
segment of type $7, enforces a change in orientation of the f r  piece (therefore the zk 
notation is strictly speaking unnecessary, but) it helps in the following; the signature 
remains binary in nature). Adding the signs in the case ofthe orbit 001 1 , we get &2! 
whereas in the case of 00101101 we get the sum 0. This indicates that in the first case, 
when we start  on a given ui line, the sequence 0011 will lead us to another 0, line, 
whereas in the second case the sequence 00101101 leads us back to  the starting line. 
As a result, the orbit 00101101, in the non-reduced phase space, is closed after one 
scan through the sequence of eight symbols, and it comes in three copies, related by 
rotat,ions D. The orbit 0011, on the other hand, needs t,hree scans before it is closed 
in the non-reduced phase space; accordingly it has  twelve intersections with lines ui, 
but the orbit itself is invariant under rotations D. 

Let us call the sum of the orientation signs of a periodic orbit its r sum. If the r 
sum is 0 mod 3, the orbit has no rota.tiona1 symmetry, a,nd there are three different 
copies related by D (these orbits may be said to  belong to the representation E of 
C3"). If the r sum is i l  mod 3,  the orbit itself shows rotational symmetry. 

This is a list of the symmetry properties of the various classes of orbits. 

(1) Class Coo orbits have an even number of 0/1 symbols. They come in t,wo t>ypes, 
depending on their r sum. 

( a )  Orbits with zero I? sum modulo 3 (like 00101101) possess only S symmetry 
but, no D nor T symmetry. Each symmetry reduced orbit stands for six different 
non-reduced orbits. 

( 6 )  Orbits with non-zero r sum modulo 3 (like 0011) possess S a n d  D symmetry but 
no T symmetry. Each symmetry reduced orbit stands for two different non-reduced 
orbits. 

(2) Class Cor orbits have an odd number of 0/1 symbols. They possess S and T 
symmetry but no D symmetry (after two scans through the sequence the non-reduced 
orbit is always back at  the starting u line). Each symmetry reduced orbit st,ands for 
three different non-reduced orbits. 

(3) Class CO" orbits have an odd number of 0/1 symbols. They come in two types, 
depending on their r sum. 

( a )  Orbits with zero r sum modulo 3 (like 00111) possess only S symmetry but. no 
D nor T symmetry. Each symmetry reduced orbit stands for six different non-reduced 
orbits. 

( b )  Orbits with non-zero r sum modulo 3 (like 1 or 001) possess S and D symmetry 
but no T symmetry. Each symmetry reduced orbit stands for two different non-reduced 
orbits. 
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(4) Class Cr+ orbits have an even number or 0/1 symbols. They possess only T 
symmetry but neither S nor D symmetry. Each symmetry reduced orbit stands for 
six different non-reduced orbits. 

( 5 )  Class CO" orbits have an odd number of 0/1 symbols. They come in two types, 
depending on their f sum. 

( a )  Orbits with zero I' sum modulo 3 (like 0101111111) possess only S symmetry 
but no D nor T symmetry. Each symmetry reduced orbit stands for six different 
non-reduced orbits. 

( b )  Orbits with non-zero r sum modulo 3 (like 010111) possess S and D symmetry 
but  no T symmetry. Each symmetry reduced orbit stands for two different non-reduced 
orbits. 

(6) Class C'" orbits have an even number of 0/1 symbols. They possess S and 
T symmetry but no D symmetry. Each symmetry reduced orbit stands for three 
different non-reduced orbits. 

(7) Class C-- orbits must have a t  least period 6 (in the symmetry reduced 
Poincark surface). Their proportion among all periodic orbits grows as the period 
increases. As t o  their symmetry properties, little can be said. The  example 001011 
(see figure 5 ( q ) )  has U symmetry but neither T nor D symmetry; it stands for six 
different non-reduced orbits of period 12. The example of figure 5(r) ,  0001101 has D 
symmetry but neither T nor ~7 symmetry; it stands for four different non-reduced or- 
bits of period 21. We do not know whether there are periodic orbits with no symmetry 
whatsoever. 

Our characterisation of periodic orbits has come from two seemingly different sides. 
In section 3 we used the invariant manifolds to  define the invariant set A with its 
symbolic dynamics. In this section we used symmetry lines to identify periodic orbits, 
and have not said anything about invariant manifolds and homoclinic or heteroclinic 
orbits. Yet there is an intimate connection. The higher iterates of the symmetry 
lines approach the invariant manifolds ever more closely, and the periodic orbits of 
increasing periods approximate homoclinic and heteroclinic points. The closure of the 
set of intersections of the lines R, is again the invariant set A .  We do not want to  
discuss this well known fact in more detail except to point out that the combination 
of symmetry lines with the invariant manifolds suggests the definition of families of 
periodic orbits, with periods increasing towards CO, each family converging towards a 
homoclinic orbit. Consider, e.g., the sequence of orbits 1 , 01 , 001, 0001, 
in figure 5(g-I). It converges towards the homoclinic orbit . . .00001.0000.. 
solitary crossover from one infinite sequence of saddle oscillations y to  another. This 
orbit contains the points Q1, Q,, Q 3 ,  Q4 of figure 3.  We can view it as the limit of the 
sequence of orbits RZl n R,(m = 0 , 1 , 2 , .  . .) which line up along the line R'',(see 
figure 4). Their symmetry class alternates between Coo and C'" depending on R, 
being R,, for even m or 

Another family of a similar kind is the sequence of orbits 0 ,Ol  ,011,0111 ,. . . 
shown in figure 5 ( a - f ) .  It converges towards the homoclinic orbit 
i.e. the once in a lifetime return from one infinite sequence of rotations r t o  the 
reversed sequence. This orbit is not shown in figure 3 because we did not draw the 
invariant manifolds of the point Pr; they are, of course, contained in the closure of the 
invariant manifolds of P7. This family can be viewed as the sequence of intersections 
RL, n R m ( m  = 0 , 1 , 2 , .  . .)  along the line RL,. Their symmetry class alternates 
between CO' and C'" depending on whether R, is R,, or R&+,. Such families of 

for odd m. 
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orbits tend t o  behave in a concerted way when a system parameter is varied (e.g. the 
energy). 

5. Scaling properties 

The simplicity of the horseshoe structure in figure 3 suggests, in a first approximation, 
to  assume affinity of the PoincarC map P on A ,  and to  characterise it completely by 
the eigenvalues of P a t  the fixed points P, and Pr. The hierarchy of scaling factors 
is thereby assumed to  be self-similar. This picture is qualitatively correct in the 
energy range (EB, E,) = (0.485,1.005). A quantitative test will be made for the case 
E = 0.6, by comparison with a full computation of the fractal characteristics. For 
energies smaller than E,, the affine approximation can still be computed and will be 
shown in the following pictures; its validity, however, is questionable. 

Our analysis of the metric properties of the fractal structures will be based on the 
thermodynamic formalism of multifractals. A good introductory review of this matter 
has been given recently by TCl [8]. Our aim here is only to demonstrate that  the 
invariant set A is adequately understood as a two-scale fractal, and that  its various 
'dimensions' have a simple energy dependence. We recall that  the thermodynamic 
formalism focuses on the purely geometric properties of fractals, i.e. on the distribu- 
tion of length scales among its various parts, while the more traditional multifractal 
analysis [9, 101 aims at characterising measures that  the fractals carry. 

Let rc and 1 / ~  ( K  > 1)  be the eigenvalues of P a t  P,, v and 1/v (v < -1) the 
eigenvalues a t  Pr (Pr is inverse hyperbolic). (In the non-reduced Poincard map of [2] 
the eigenvalues of y and r were denoted by p and A; the connection is K = p1t2 ,  v = 
A l l 3 . )  Figure 6 shows the eigenvalues as functions of the energy, in the energy range 
E E (Es ,Em) .  For E -+ E, they tend to  infinity, K - 00,v -+ -ca. As E + E,, 
the eigenvalue K a t  P7 tends to  6 .9 . .  . which can be computed analytically (see [ a ] ) ;  
v = -1.3.. . a t  E = E,. The orbit P, vanishes a t  E = E, whereas Pr continues to  
exist in an interval (Eo ,  Es ) ,  turning elliptic for E < E, with E, somewhat smaller 
than E,. 

I 
- ot-' I / /  ! , I l l ,  I !  

0 4  0 5  06 07 0 8  09 1 0  11 
E 

Figure 6. The logarithms of the eigenvalues s and ( V I  of the fixed points P-, and f i  
in the symmtery reduced P o i n c d  map P, as functions of the energy. Also shown 
are the Lyapunov number as given by (37), and the Kolmogorov entropy according 
to (43). 
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The invariant set A is the direct product of two Cantor sets As and A“ where As is 
the intersection of A with the segment P,Q, of the stable manifold of P-, (see figure 3) ,  
and A” = R(AS) .  The set As consists of two disjoint parts which are contractions of 
the total, by factors r1 = I /& and r p  = -I/Y respectively. Such fractals have been 
considered extensively in the literature, see e.g. [IO, 111, and [8] for a review. They 
are geometric multifractals whose length scales on the nth level are ryr;-m where m 
is the number of 0’5, and n - m the number of 1’s in the binary sequence of the piece 
under consideration. The statistical properties of A can be derived from the partition 
function 

where the sum is taken over all sequences of length n (n >> 1). Using Stirling’s rule 
in the evaluation of binomial coefficients we find the F ( P )  function to be 

PF(P) = -log({ + 7.’;’). (30) 

According to the thermodynamic formalism the corresponding ‘energies’ U and ‘en- 
tropies’ S = S ( U )  can be derived via 

The quantity U measures how rapidly the length scales decrease with increasing n: 
its value for a piece with a given symbolic sequence is 

1 
n 

U = - - log((“ r ; -”)  

S(U)  characterises the number W(n,  U )  of pieces of the same size, with sequences of 
length n,  and belonging to a given value of U :  

Using P as a parameter, it is straightforward to plot the S ( U )  spectra. Figure 7 shows 
P F ( P )  and S ( U )  for a number of energies E.  

Assuming equidistribution of points in phase space, we can deduce from this purely 
geometric description of our fractals the characterisation of the measure that they 
carry. As has been shown in [8], the Holder exponents a and the spectrum of fractal 
dimensions f(a) of this measure are given by 

Similarly, the ‘order q generalised dimensions’ D ( q )  are related to the ‘thermodynamic’ 
quantities via 
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0 1 2  

a 
Figure 7. (a) OF(@) against p for six different energies between E = 0.459 and 
E = 1 .O.  The horseshoe picture on which (30) is based holds for E > EB 0.485. ( b )  
S ( U )  against U for the same energies; the range of possible U values is (log JvI,  log^). 
( c )  f(cr) against cy for the same energies. 

We can also give the generalised entropies IC, 
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and the Lyapunov exponent X 

rl log r1 + rz log rz 
rl + rz 

x = V ( P  = 1) = - (37) 

All these quantities are contained in the 'free energy' F ( P ) .  
Let us discuss a few special characteristics of A.  Its fractal dimension Do is the 

value of p for which F ( P )  = 0; it is also the maximum value of f(a). As figure 8 
shows, it decreases systematically as the energy E increases. According to  [12] this 
decrease should follow the law 

as E + E,,,. This non-analytic behaviour is an immediate consequence of 

r f o  + rfO = 1 (39) 

if r1 - ( E ,  - E)" and r z / r l  - constant as E E,, where x is any power. 

, 
I 1  0 1  I 

0 4  0 5  0 6  0 7  0 8  0 9  1 0  11 
E 

Figure 8.  The dependence of fractal dimensions on the energy in the range EB 5 
E 5 E,. Do is the fractal dimension, D1 the information dimension; all other D, 
are between D m  and D-m. 

The information dimension D ,  can be derived analytically from (35): 

( r1 + rz) log(rl + rz) - r1 log r1 - rz log rz 
r1 log rz + rz  log r1 

D, = 

It is also shown in figure 8, together with the minimum and maximum values D,,, 
and Dq--m. These values are obtained from the limits P + f c o  of P F ( p ) .  We have 

and consequently 
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This shows that  the limiting values of U are given by the eigenvalues )I: and v only 
whereas the limiting values of D, and a also involves F (  1) which can be interpreted 
as the escape rate [13]. 

The  topological entropy KqzO = -PFJp,o = log 2 reflects the binary coding of the 
scattering dynamics; for q = 1 we obtain the Kolmogorov entropy 

where X is the Lyapunov exponent. K ,  and X are plotted together with the eigenvalues 
in figure 6 .  

In order to test the validity of the approximation based on the two eigenvalues 
n and Y, for E = 0.6, we have computed some thermodynamic quantities from the 
lengths of the intervals that  are to be cut out in the recursive construction of As. These 
intervals were determined with sufficient precision to  the eighth generation, and from 
their lengths .ti") in generation n, i = 1 . .  .2", we determined F ( P )  according t o  the 
recipe given in [13] 

2" 

i = l  

Using P as a parameter, we calculated the function S = S(U) .  The result is shown 
in figure 9 where a comparison with the eigenvalue approximation is made. The 
agreement is quite satisfactory. The points calculated by (44) span a slightly larger 
range of U values because numerical errors in the determination of the lengths tin' 
tend to  increase the interval of scaling factors. 

I O .  I 

Figure 9. Comparison of S = S ( U )  as given by the intervals of lengths Pf", 
i = 1 . .  .256, (broken curve, computed by means of (44)), with the eigenvalue a p  
proximation (full curve, computed with (31)). The energy is E = 0.6. 

6. Concluding remarks 

The method of iterated symmetry lines is a powerful tool to  obtain sets of periodic 
orbits in a Hamiltonian system. The periodic orbits are of interest because they 
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organise the system’s dynamics: as elliptic centres of order or as hyperbolic centres 
of chaos. Recently it has become evident that they are particularly important in 
connection with the semiclassical quantisation of classically chaotic systems [14, 15, 
161. It is therefore important to know what proportion of the totality of periodic orbits 
can be determined by the method of symmetry line iteration. 

We have analysed this question for the example of a scattering system where a 
complete survey on the periodic orbits exists. This survey is provided by the fact 
that the PoincarC map of this system contains a perfect horseshoe map with its cor- 
responding symbolic dynamics. This allows us to investigate systematically which 
periodic orbits are missed by the symmetry line method. We approach the invariant 
set A of the horseshoe map using the symmetry line technique and characterise the 
subset of periodic orbits that can be derived in this way. These orbits can be grouped 
into classes each of which reflects some of the system’s symmetry properties; these 
symmetries can also be expressed in terms of the binary symbolic sequences that cor- 
respond to  the orbits. It turns out that in the case studied, all periodic orbits with 
periods up to 5 (in a symmetry redriced Poincarl surface of section) can be obtained 
as intersections of the symmetry lines. The first orbits that cannot be obtained in this 
way have period 6. Their proportion increases with increasing period and becomes 
dominant as the period tends to  infinity. Luckily, the more conspicuous properties of 
the system’s chaotic dynamics tend to be related to the periodic orbits of low periods 
[17], but as the example of the Trojan asteroids in celestial mechanics shows, there 
are Hamiltonian systems which exhibit notable exceptions from this rule. 

The simplicity of the horseshoe map in the case under study h a s  allowed us to give 
a comprehensive characterisation of the multifractal properties of the invariant set A.  
Using the assumption of affine dynamics on the set A we were able to compute the 
energy depence of its various fractal dimensions on the basis of the thermodynamic 
formalism as presented by T61 [8]. Comparison with direct computation shows that 
this simplifying assumption is well justified. 
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